首页> 外文OA文献 >Impacts of pre-treatment technologies and co-products on greenhouse gas emissions and energy use of lignocellulosic ethanol production
【2h】

Impacts of pre-treatment technologies and co-products on greenhouse gas emissions and energy use of lignocellulosic ethanol production

机译:预处理技术和副产品对木质纤维素乙醇生产的温室气体排放和能源利用的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Life cycle environmental performance of lignocellulosic ethanol produced through different production pathways and having different co-products has rarely been reported in the literature, with most studies focusing on a single pre-treatment and single co-product (electricity). The aim of this paper is to understand the life cycle energy use and greenhouse gas (GHG) emissions implications of alternative pre-treatment technologies (dilute acid hydrolysis, ammonia fiber expansion and autohydrolysis) and co-products (electricity, pellet, protein and xylitol) through developing a consistent life cycle framework for ethanol production from corn stover. Results show that the choices of pre-treatment technology and co-product(s) can impact ethanol yield, life cycle energy use and GHG emissions. Dilute acid pathways generally exhibit higher ethanol yields (20 to 25%) and lower net total energy use (15 to 25%) than the autohydrolysis and ammonia fiber expansion pathways. Similar GHG emissions are found for the pre-treatment technologies when producing the same co-product. Xylitol co-production diverts xylose from ethanol production and results in the lowest ethanol yield (200 litres per dry t of stover). Compared to producing only electricity as a co-product, the co-production of pellets and xylitol decreases life cycle GHG emissions associated with the ethanol, while protein production increases emissions. The life cycle GHG emissions of blended ethanol fuel (85% denatured ethanol by volume) range from -38.5 to 37.2 g CO2eq/MJ of fuel produced, reducing emissions by 61% to 141% relative to gasoline. All ethanol pathways result in major reductions of fossil and petroleum energy use relative to gasoline, at least 47% and 67%, respectively. Pathways with electricity as the sole co-product use the least fossil energy All ethanol pathways studied meet the USA Energy Information and Security Act requirement of a 60% reduction in GHG emissions compared to gasoline for classification as a cellulosic biofuel; however, greater reductions are achievable through strategic selection of co-products.
机译:通过不同的生产途径生产并具有不同的副产物的木质纤维素乙醇的生命周期环境性能在文献中鲜有报道,大多数研究集中在单一的预处理和单一的副产物(电)上。本文的目的是了解替代预处理技术(稀酸水解,氨纤维膨胀和自水解)和副产品(电,颗粒,蛋白质和木糖醇)的生命周期能源使用和温室气体(GHG)排放的影响),为玉米秸秆生产乙醇开发一致的生命周期框架。结果表明,预处理技术和副产物的选择会影响乙醇产量,生命周期能源消耗和温室气体排放。与自动水解和氨纤维膨胀途径相比,稀酸途径通常表现出更高的乙醇收率(20%至25%)和更低的净总能源消耗(15%至25%)。当生产相同的副产品时,预处理技术的温室气体排放量相似。木糖醇联产将乙醇生产中的木糖转移出去,并导致最低的乙醇产量(每干吨秸秆200升)。与仅作为副产品生产电力相比,颗粒和木糖醇的共同生产减少了与乙醇相关的生命周期温室气体排放,而蛋白质生产则增加了排放。混合乙醇燃料(体积百分比为85%的变性乙醇)的生命周期温室气体排放量介于-38.5至37.2 g CO2eq / MJ燃料之间,相对于汽油,排放量减少了61%至141%。所有乙醇途径均导致相对于汽油而言,化石能源和石油能源的使用量大大减少,分别至少降低了47%和67%。以电为唯一副产物的途径使用的化石能源最少。所有研究的乙醇途径均符合美国能源信息和安全法的要求,与汽油相比,将其分类为纤维素生物燃料的温室气体排放减少60%;但是,可以通过战略性选择副产品来实现更大的减排量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号